HEAPONS EFFGGCTS FOR PROTECTIVE DESIGN*
 Harold Ln Brode
 Physics Division The RAND Corporation

P-1951

March 31, 1960

Space Technology Laboratories Colloquium, E1 Segundo, March 31, 1960; also UCLA Extension Course on Ground Support Systems for Missiles and Space Vehicles, 25-30 April 1960.

Reproduced by
The RAND Corporation - Santa Monica - California

The views expressed in this paper are not necessarily those of the Corpolation

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

SURAARY

Large yield weapons used against hardened installations create an environment of air and ground shock and of thermal and nuclear radiations in extremes which military systems designers have only recently been obliged to consider. As the hardening requirenents rise, and systems are designed to survive closer-in, the explosion phenomena of significance became those associated with a region of intensities of effects beyond our experience and best understanding. These close-in phenomena are examined in this paper with a view to delineating their influence on the survivability of structures and equipment at very high overpressure levels. No specific military system or components are considered. The primary puxpose of this paper is to build a general appreciation for the nature of the violent forces with which protective designs must cope.

This presentation of the phenomenology, however, may also be useful in framing design characteristics for hardened systems.
CORTESNTS
SUNARY 11
Section
I. INIRODUCTION 1
iI. nuclbar radiation 3
III. FIREBALL PORMATION 10
IV. THBRMAL RADIATIOK 13
V. AIR BLAST 17
VI. CRATERRIMG 21
VII. GROUSD SHOCK 25
VIII. AFDEGR KFIFECTB 33
BIBLIOGRAPHY - MUCLEAR RADIAIION 64
BIBLIOGRAPHY - AIR RLABI AND PIRIBRAIT 65
BIBLTOGRAPHY - Ground Shock 66

I. INTRODUCTION

Modern weapon systems invariably begin and end with concern for the effects of nuclear explosions. The final sting in nearly every current or proposed system is a nuclear weapon, and the amount of damage and destruction it is capable of inflicting on an enemy target is of obvious concern to the system planners. But at the outset the vulnerability of a system to nuclear explosions dictates its ability to survive counterforce action. Airplanes in the air, missiles on the ground or in space, and all their necessary support equipment (with which this course is primarily concerned) will be evaluated not only from the standpoint of their reliability in normal operation, but equally importantiy in the light of their possible failure in the hostile enviromsent of nuclear explosions. It follows that many components of future military systems will be designed with an eye to survival at close distances from large yield explosions, and that sensible and economic design will be predicated on a knowledge of the nature of the various effects to be experienced in such extreme circumstances. Since it is much easier to harden small items than to harden whole complexes, and since hardening will be costly in every case, bardening will generally be restricted to such components as are essential to the final phases of launching.

To understand better what difficulties can be expected in providing for the continued operation of essential ground support equipment during beavy nuclear attack, one needs a sharp descriptive picture of the nature of a nuclear explosion, and one also requires estimates of the damaging effects and of the level of protection necessary. This lecture aims to
provide a general background in weapons effects. The following sections will cover some specific areas of nuclear explosion phenomena pertinent to the design of hardened systems. These subjects may be identified as follows:

```
nuclear radiation and shielding
flreball growth and effects
thermal radiation
air blast
cratering and throwout
ground shock and effects
cloud rise and fallout
afterwinds, dust and debris
```

Although most of these phenomena are distinct and separate in their effects, they are very closely interrelated and have continuous interactions one upon the other.

II. SUCLRAR RADIATION

To appreciate the effects of nuclear radiation and the necessary steps for protection we mast know (1) the possible effects such radiation may have on humans and on equipment, (2) the expected level of exposure from a nuclear burst, and (3) the efficiency of various shielding materials. Of the various measures of nuclear radiation intensity the roentgen unit for gamm-rays and the "rad" for neutrons will be used bere. The roentgen represents an intensity of ganma rays such that 87 ergs is absorbed in one gram of air, but in soft tissue (meat) the same intensity deposits about $97 \mathrm{erg} / \mathrm{gm}$. The rad is defined as the amount of radiation (neutrons) which will produce 100 ergs of absorbed energy per gram of soft tissue. Although the response of biological systems is not directly proportional to the energy absorbed, the neutron dose in terms of rads will serve as a rough measure of allowable mman doses. Doses of more than 450 roentgens or rads may be expected to kill 50 per cent of those exposed, and a dose upwards of 700 r will cause 100 per cent fatalities. But a dose of less than 100 r is not expected to cause noticeable degradation of maman activity and is not likely to be lethal. Consequentiy, in areas where personnel will operate during attack, the dose should not be allowed to rise above about 100 rad or roentgens.

The electronic systems must also be protected from intense radiation. Circuits involving semiconductors are particulariy sensitive. In general, the level of allowable radiation is fairly sensitive to details of the circuitry. One can state a broad rule for currently typical systems to the effect that for silicon elements the neutron exposure should be kept to less than $10^{11} \mathrm{n} / \mathrm{cm}^{2}$, and for germanium elements to less than
$10^{12} \mathrm{n} / \mathrm{cm}^{2}$. Usually diode applications are less sensitive than higher modes of operation, and thin transistors are less sensitive than thick elements. With special attention to circuit design, both the above thresholds for permanent damage might be increased by a power of 10. Other than electronic systems, the only structural materials exhibiting particular sensitivity to radiation are synthetics such as Teflon, which may be damaged by exposure to more than $10^{5} \mathrm{rad}$ (gamma-rays).

In the above, mention is made of both neutrons per square cm and rads. For typical neutron spectra from nuclear explosions, these measures may be approximately related by the following conversion:
one $\mathrm{rad} \sim 4.4 \times 10^{8} \mathrm{n} / \mathrm{cm}^{2}$.
Although the initial nuclear reactions (wich are in a way responsible for all the features of a nuclear explosion) take place inside the bomb and are over in a fraction of a microsecond, muclear radiations persist for long periods after the burst and are scattered or radiated from atoms far outside as well as inside the bomb debris. Approximately 90 per cent of the neutrons generated are absorbed within the bomb, but the remaining fraction which escapes creates fimpressive doses in the air. An even larger percentage of the gama-rays emitted during the fission process are absorbed in the bomb, but gamma rays coming from the excited fission fragment nuclei continue to radiate for long times. A further source of gama-rays results from neutron captures in nitrogen which lead to the emisaion of gama-rays about 6 per cent of the time.

Since a bomb may be viewed as a source of a fixed number of neutrons the total neutron flux as a function of the distance from the explosion can be expected to fall off as the inverse square of the distance
corresponding to the increasing area of spherical surfaces at larger radii. In addition, the flux will be reduced by the removal of neutrons absorbed in the air along the way, which leads to an exponential-type decay of the flux.

$$
\mathrm{I}=\frac{2 \times 10^{22} W_{\mathrm{MP}}}{R_{f t}^{2}} e^{-\frac{\mathrm{RO}_{0}}{780}} \mathrm{n} / \mathrm{cm}^{2},
$$

where p is the density of air in grams per liter (~ 1.1 for average conditions). In this expression it can be seen that the neutrons per square am increase in proportion to the yield (which is only approximately true and depends sensitively on the particular weapon) and decreases not only with the inverse square of the distance but by an additional exponential decay. Using the conversion to rads, this formula becomes

$$
N=\frac{5 \times 10^{13} W_{N T}}{R_{f t}^{2}} e^{-\frac{R \rho}{780}} \mathrm{rad} .
$$

The source of gama rays, being dependent on neutron captures and on fission fragment decays, is both a complicated function of time and space. The fission fragment radiation decreases with time about proportional to the inverse 1.2 power of the time, while the capture gammas are nearly all generated in the ifrst $1 / 100$ of a second. Although the gamm-rays traverge the air with roughly the same kind of geometric decrease and absorption behavior as the neutrons, the relatively long time for their emission allows the shock movement of the absorbing air to influence the dosage at distant points. This hydrodynamic effect can cause large increases in the gamma-ray dose over that dose which could be expected in
the absence of the expanding shock wave. But the effect cannot be important at the most close-in distances where very little absorbing air lies between source and receiver even before the blast. Neither can the effect amount to much at very large distances where the air motions are both negligible and late. But at the intermediate ranges, where many mean-free-paths of air stand in between, and where the shock motions are impressive, the hydrodynamic effect mast be included in any analysis which aims to predict (even approximately) the levels of radiation.

Since the shock wave is nearly symmetric about the bomb, it does not influence the spherical character of the ganma-ray flux, but it does change the character of the absorption and scattering (Fig. 1). In a formulation similar to that describing the neutron flux, the hydrodynamic effect can be roughly included by allowing the mean-free-path (λ) and the effective amplitude of the source (α) to be functions of the yield:

$$
\begin{aligned}
& D_{\gamma}=\frac{3 \times 10^{13} W_{M P}}{R_{f t}^{2}} \alpha e^{-\frac{\rho R}{\lambda}} \text { roentgen } \\
& \alpha \simeq 1+.005 W_{M T}^{2} \\
& \lambda=1300+30 W+3 H^{2} \mathrm{ft} \\
& .1<W_{M F}<20
\end{aligned}
$$

Properly, the dose is a more complex function of both the yield and the range, but over a limited span of yields and for radil corresponding to a few thousand feet, the above formula may suffice.

As an example of the relative neutron and gamm-ray doses, the approximate dose at half-mile intervals from a one-megaton burst are
listed in Table 1 together with the approximate overpressure to be expected at tbose distances. Note that the neutron dose is dominant only at the closest station. Such a cross-over between neutron dominance and gama-ray dose dominance is to be expected, since the source streagth is greater for neutrons, but so also is their decay rate.

Bable 1
DOSE VS DISTANCE - ONS NU

Caman	Heutron	Distance	Overpressure
$\sim 40 \mathrm{r}$	$\sim .5 \mathrm{rad}$	2 miles	$\sim 10 \mathrm{psi}$
$\sim 500 \mathrm{r}$	$\sim 20 \mathrm{mad}$	1.5 miles	$\sim 20 \mathrm{psi}$
$\sim 10,000 \mathrm{r}$	$\sim 1,800 \mathrm{rad}$	1 mile	$\sim 40 \mathrm{psi}$
$\sim 200,000 \mathrm{r}$	$\sim 330,000 \mathrm{mad}$.5 mile	$\sim 200 \mathrm{psi}$

These nubers reflect the high levels of nuclear radiation present in the air, and in order to reduce the dose to tolerable levels inside protective structures some shielding must be accomplished. What functions shields must perform is obviously related to both the nature and intensity of the radiation and to the sensitivity and location of the equipment or personnel to be sheltered. Some general properties of and requirements for shielding can be set dow, however.

Since a shield will ordinarily be required to stop both peutrons and gamma-rays, it should be planned to include materials appropriate to the absorption of each. Gama-rays are more readily stopped by the heavier elements, the most common such element being lead, bat iron is also quite efficient. A rough idea what effect various comon shielding materials have on the fission fragment gamna-rays can be seen from the thicknesses required to reduce the ilux by 50 per cent. To this effect, it takes six
inches of concrete or eight of earth or twenty-four of wood while only one and one-half of steel will do, and a mere half-inch of lead would reduce the prompt garma dose to half its initial value (Pig. 2).

Shielding for neutron fluxes is not entirely a simple matter of interposing dense materials, since the neutrons, as uncharged particles, can move through heavy atoms like a golf ball driven through a pile of bowling balls. But, by the same analogy, a golf ball hitting a bucket of golf balls loses its energy much more rapidly. On each collision of a golf ball with a bowling ball, their total momentum is unchanged, i.e. is conserved. In doing this, the massive bowling bell need acquire very little of the golf bell's velocity and bence recelve very little kinetic energy from the golf ball to still conserve momentum in their collision. On the other hand, a golf ball striking another golf ball results most often in both acquiring half the initial ball's velocity, thas on each collision the incident ball loses about half its energy.

In an analogous way a neutron may pass through heavy-element material with little loss in energy, while a neutron in hydrogenous material or matter composed largely of light atomic elements, such as water or plastic or other hydrocarbons, may be slowed dow to essentially thermal energies and then may be more likely captured in some mucleus. Shields for energetic neutrons, then, are best designed with light element components. But, in some neutron captures very energetic gamm-rays are emitted, so that, for proper shielding from these, more heavy element material may be included. A reasonable compromise is often possible with reinforced concrete or special concrete mixtures with iron punchings or with boron salts added. For more exotic designs, laminates of lead and plastics or parafin or
water are used. Some materials produce radioactive isotopes upon absorbing neutrons, so care should be exercised to avoid those elements that have radioactive half-lives long enough to cause contimued danger. It is well to note that the first few inches of shield may reduce the neutron flux more than succeeding inches, since the first inches screen out many low energy neutrons (as well as fast ones), leaving only fast ones for succeeding inches of the shield. Except in the first few inches, where the effectiveness of the shield is even greater, it takes about ten inches of concrete to reduce the flux by a factor of ten, or about twenty inches to cut it by a factor of 100. Special heavy concrete may be as effective in thinner layers, seven inches being roughly equivalent to ten incbes of normal concrete. The use of colemanite or other boron salts in the mix can result in even greater absorption ability, since one of the natural isotopes of boron has an umusual affinity for the slow neutrons.

For many bat not all situations, the necessary earth cover or concrete and steel for blast protection is more than a sufficient radiation shield.

III. FIREBAIL FORMATION

In an explosion of something like a one-megaton bomb there is a release of energy equivalent to 10^{15} calories in a time much less than a millionth of a second and in a mass of a very few tons. Such a bigh energy density leads to temperatures of millions of degress, and leaves mach of the energy in the form of radiation. This radiation quite quickiy diffuses out of the bomb and into the air. Unlike ordinary visible light, the radiation from the barab materials at such high temperatures is mostly in the form of X-rays and ultraviolet light and "light" of these high frequencies does not go to large distances in air. Rather, it is absorbed in the air immediately around the bomb, causing that air to be beated to temperatures in the neighborhood of a milion degrees centigrade. But air at a million degrees becomes quite transparent even to X-rays and ultraviolet light, so that subsequent radiation from the bomb can traverse this region of bot air more freely and will suffer less absorption. By such a process, then, this initial region of hot air continues to grow as energy pours out of the bomb, and, since the cold air is still quite opaque, a rather sharp front is maintained between the cold air outside and the bot air inside.

The initial growth of this isothermal sphere is mach faster than hydrodynamic shocks can move, even at these exalted temperatures. But, as the energy expands by this radiation diffusion process into larger and larger volumes of air and its temperature drops, the speed of the expansion decreases, until, at about $300,000{ }^{\circ} \mathrm{C}$, the rate is comparable to a shock speed at the same temperature. After that, an extremely
strong spherical shock wave develops and races onward at unbelievably high Mach number. For a 1 megaton burst, this transition should occur at a radius of about 130 ft from the bomb. The extremely strong shock, driven by the high pressures in this hot sphere, begins to compress the air some ten-fold above normal air density and to force this hot air outward close behind the shock front. Since the shock is expanding into continuousiy larger volumes of air, its strength, and, consequentiy, its ability to heat the air it engulfs, decreases rapidiy with increasing sbock radius. Although the shock-heated air is initialiy at temperatures well below the interior temperatures, it is hot enough to be intensely Iuminous (with intensities many times that of the aun). This shock front is the source of the early thermal radiation. As this shock decreases in strength, its lminosity decreases so rapidly that the total radiation from the fireball also decreases in opite of the increasing area of the expending shock front.

Pigure 3 1llustrates the early temperature history of this blast wave, showing the temperature in degrees on the Kelvin scale (the absolute centigrade scale) for a one megaton surface burst. The earliest curve (. 075 ms) is characteristic of the nearly isothermal fireball formed by the radiation diffusion. At later times the shocked air beyond the 1sothermal sphere (which is expanding) shows as a region of lower telyerature. As the shock decreases in strength, it heata the air less, so that the air behind the shock is botter than that just at the shock, and a steep increasing gradient in temperature exists from the shock front back to the nearly uniform hot interior.

Since the radiation diffusion growth is initially too fast to induce appreciable motions in air, the air is left at essentially normal air density while its temperature and pressure are raised to values like a million degrees Kelvin and a million psi. As the radiation wave slows in its growth and the high pressures begin to build a strong shock, the air in the hot interior begins to expand to lower densities and the shock thas formed compresses the air ahead to many times normal air density (fig. 4). The interior of the fireball rapidiy becones evacuated, so that by the time the shock has decreased to a peak pressure of 1000 psi ($\sim 74 \mathrm{~ms}$ and 1500' for 1 MI) the interior density is about one-bundredth of normal air density.

The pressure profiles at these early fireball times are shown in Fig. 5. The earliest air overpressures are indeed like a million pounds per square inch, but rapidly drop as the fireball grows, so that a peak orerpressure of $100,000 \mathrm{psi}$ occurs at about 350 ft (for 1 MH) and an overpressure of 10,000 psi occurs at about twice that distance \sim at 700 ft. As a little more than double the distance again, at about $1,500 \mathrm{ft}$, the peak overpressure is down to 1000 psi.

IV. THIRPMAL RADIATION

Figure 6 shows temperature profiles at late fireball times (as indicated) for the same one megaton surface burst. This is an appropriate point at which to digress from the blast history to discuss the nature of the thermal radiation. As was mentioned, most of the earliest light from the bomb cannot go far in air, but as a shock develops, and the surface of the fireball becomes a sharp sbock front, it begins to radiate atrongly In the visible at an intensity characteristic of a blackbody at the shock temperature. At times earlier than times illustrated bere, only a fraction of the blackbody rate (which is proportional to the fourth power of the temperature) is in the visible spectrum, and only that fraction which is in wave lengths in the visible or infrared can go to large distances. The power or rate of thermal radiation at the carlier times, then, can be expressed as proportional to the surface area of the fireball ($2 \times \mathrm{R}_{\mathrm{s}}^{2}$) times the specific blackbody radiation rate at the shock temperature σT_{8}^{4}, but modified by a factor indicating the fraction of the spectrum that can pass through cold air $f\left(T_{8}\right)$.

$$
P=2 x R_{s}^{2} \sigma T_{s}^{4} f\left(T_{s}\right)
$$

At times as late as shom in Fig. 6, the shock front itself is becoming so cool that it is no longer atrongly luminous, and the hotter air behind begins to shine through it. Since the hot interior is still expanding and since the radiation intensity increases rapidly with increasing effective temperature, the thermal power rises rather sharply at this time. As the rate of radiation increases, it represents a rapid beat loss which depletes the store of energy in the fireball, and, as
the temperature drops the thermal power again decreases. The depletion and cooling is less rapid, so that the thermal intensity trails off over a period of ten or more seconds. This sequence of optical-hydrodynamic events results in a first fast maxdmum in the thermal radiation followed by a miniman at aromad a tenth of a second and by a second maximuat at around one second. Since both the time duration of the first maximum is short and the size of the fireball is small, less than balf of one per cent of the bomb's energy is radiated before the minimmin in the power pulse. The second pulse is longer and radiates from a larger effective surface, so that it emits nearly one-third of the total yield. The main pulse of thermal radiation reaches a maximom in about one second (for the one megaton case) and, as mentioned, lasts about ten seconds. Such huge amounts of energy radiated in such a relatively short time will result in impressive heat loads on any exposed surfaces. Light weight, thin, dry, flamable materials may be ignited by this beat load out to very large distances. Knergies from five to fifty calories may be required, however, and thicker, denser or damper materials may only char on the surface without igniting to sustained brurning. Under the nost "Pavorable" conditions, such fires could be started at distances as large as ten miles from a one megaton explosion. Degrading factors such as attenuating or scattering clouds, smoke, haze, fog or dust or chance shielding by intervening topography, structures or natural growth must be considered for large yield surface burat effects. For the large yield explosions, the pulse occurs over a sufficiently long period of time for exposed surfaces to char and smoke but in so doing to create partial shields against the bulk of the impinging thermal energy. They thus experience less thermal
damage than could be expected from the total heat inputs. In all of our Pacific tests, there has been no instance (to the author's knowledge) where fires were started at distances beyond those for serious blast domage.

At the very close-in positions of hardened installations the thermal phenomenon is more one of an intensely hot bath in the fireball gases than one of incident thermal radiation. Figure 7 illustrates the time history of the air temperature at scme high peak overpressure levels. At 40 psi one is outside the fireball's maximum radius, so that as the shock strikes, the air is raised about $150^{\circ} \mathrm{C}$ but is then cooled within a couple of seconds to nearly normal air temperature again. The 100 psi station is on the edge of the fireball, and so the temperature continues to rise somewhat after shock arrival. The shock, being stronger here, beats the air to a higher temperature initially (about $400^{\circ} \mathrm{C}$). The air behind the shock is still expanding, but since that air was shocked to even higher temperatures, it exposes the 100 psi point to higher and higher temperatures until the expansion stops. The air flow reverses and eventually ends in the general rising away of the hot remaining fireball. The 200 psi point is well inside the maximum fireball radius, and the temperature rise after shock arrival indicates that much hotter air engulfs this station. Here the temperature rises from a shock value of $1000^{\circ} \mathrm{K}\left(\sim 700^{\circ} \mathrm{C}\right)$ to about $4000^{\circ} \mathrm{K}$ in less than a second.

Since the fireball is like a bubble in the atmosphere, it begins to rise and so pulls away from the earth's surface in just a few seconds. Using a very approximate model for the effect of this firebell rise on the temperature history at the distance corresponding to a peak overpresaure
of 200 psi , it appears that the bot temperatures of the fireball interior will be reduced at this ground range in about the manner indicated by the decreasing tail on the 200 psi curve of Fig. 7. Thus a decrease begins after four or five seconds of exposure, and in fifteen to twenty seconds the air temperature has returned to normal. The other high temperature curves would be similarly reduced at late times by the same effect.

At the 400 psi and the 1000 psi levels the temperatures rise to even higher levels, but subsequently show a more rapid drop (at thes less than one second) due to the thermal radiation loss which becomes significant even before the fireball has begun to rise. Bven at these high levels one need not expect serious thermal damage to protective structures, since the duration of the heating is too short for serious heat conduction beyond the surface layers of exposed materials. Some pitting and charring, even some evaporation or blow-off on steel or concrete can occur, but reinforced concrete doors mounted flush with the ground surface at 1000 psi from a megaton explosion should not suffer real damage. Elements exposed above ground level may suffer more thermal damage, but most such structures will also be more sensitive to blast damage.

Designs must work to avoid damage to door seals or to interiors through contact with the hot fireball gases. Ingestion by ventilating systems and other openings must be prevented, but the major design problems do not hinge on the temperature or thermal radiation effects that characterize the fireball. There are some even less desirable features than this heat to existence in the inhospitable enviromment of the fireball interior.

V. AIR BTAETI

Returning to the history of the blast, one finds in Fig. 8 the overpressure profiles extended to later times, larger distances and lower overpressure levels. If one notices the nature of these profiles at the earlier times (before one second), the presaure-time relations (to be discussed next) may be more easily understood. Hote that the pressure drops rapidiy just behind the shock as one goes to smaller radil, while in the interior there are essentially no pressure gradients. The interior is the very hot region of the fireball where pressure pulses of any sort are transmitted outward very rapidly because of the accompanying high sound speeds at these high temperatures. Hear the front, hovever, the observed positive pressure gradient (as a function of radius) is a necessary feature of the spherically expanding shock, in which the interior gas is constantly decelerated as the shock runs into more and more stationary air.

Because the pressures are so uniform inside the shock and because the pressure rises and falls so sharply at the shock front, the time history of the overpressure at any point is characterized by a bimodal decay (Fig. 9). Inmediately after shock arrival the decay is dominated by the passage of the pressure spike associated with the shock front itself. Then, shortly afterwards, the decay is dictated by the general rate of pressure decrease in the more uniform interior, which has by then expanded over the position in question. This time bistory can be quite well described at all pressure levels by the sum of two decreasing exponential functions, representing the two decay rates.

$$
\Delta P=\Delta P_{s}\left(a e^{-\alpha t}+b e^{-\beta t}\right)\left(1-5 / D^{+}\right)
$$

In order to force this fit to go to zero overpressure at the end of the positive phase, a linear factor bas been included which becomes zero at a time equal to the duration of the positive phase, $\left(D^{+}\right)$where the time is measured as the time after shock arrival.

Figure 10 displays the positions of the shock front from a one megaton surface burst illustrating very generally the relative position of the fireball and crater. The rapid increase of peak overpressure as one moves closer to the burst point is strikingly evident. Note that 100 psi occurs just at the edge of the fireball. The high transient winds or air velocities accompanying the shock enphasize the importance of placing protective structures below or at least flush with the surface. The short solid lines below the ground indicate schematically an expected reduction of peak overpressure at depths. The dashed lines are intended to indicate generally the relations between the air sbock position and the wave front in the soil at corresponding times. At the higher overpressures (down to 200 or 300 psi) the air shock speed is faster than the seismic velocity of the soil, so that the coapression wave in the soil lags behind and propagates downard from the surface along a shallow saucer-shaped wave front. As the air shock speed continues to decrease, at some point it drops below seismic speeds, thus allowing waves in the soil to move out ahead of the air blast. This feature leads to some complication in the ground shock interpretation, and will be touched on again in discussing the ground shock problems.

Some general features of the blast wave are illustrated as a function of the peak overpressure in Fig. 11. Independent of weapon yield, the shock temperature, peak dynamic pressure, shock velocity and maximum
particle velocity at any point are related to the peak overpressure at that point as shown in Fig. 11. The temperature and velocities increase with increasing peak overpressure, but less rapidiy than the peak overpressure itself. The peak dynanic or wind pressure rises very rapidily, however, increasing more like the square of the peak overpressure at low overpressures and becouing proportional to the overpressure itself only at the highest levels.

The sbock radius and the time of shock arrival depend on the explosion yield, being longer by a factor $\mathrm{K}^{1 / 3}$ (in MI) for energies greater than a megaton.

The impulse of the blast wave is often a significant parameter in damage prediction. The inpulse is the time integral of the pressure taken over the time of the positive phase. Figure 12 shows the general relation of the impulses for overpressure and dynomic pressure (along with the durations of each) to the peak overpressure. Prom this figure one can determine that the overpressure impulee increases (with increasing overpressure) like the square root of the overpressure below 1000 psi , and about like the cube root at higher overpressures. Since at the higher overpressure levels the overpressure itself is proportional to the inverse cube of the radius, its impulse then is roughly proportional to the inverse radius. The dynamic pressure impulse decreases only very slowly with decreasing overpressure above 100 psi, being proportional in that region to about the fourth root of the overpressure, but it drops from importance exceedingly rapidly at lower overpressures.

Although the total durations of the positive phase of overpressure and air velocity are not changing much with overpressure, as one moves
to higher overpressures the bulk of the impulse is delivered more nearly in the first few milliseconds rather than uniformily over the whole positive phase. As was $111 u s t r a t e d$ in the pressure-time curves, the pulse shapes at high overpressures are much more peaked than at lower overpressures, and the exact duration of the positive phase is less important there than it is at the lowest overpressure levels (where the puise becones nearly linear in its time decay).

VI. CRATESRIMG

The depression left by a megaton bomb exploded on the surface of the ground is quite impressive. The general nature of such nuclear craters is typical of craters from a wide variety of explosive or trupact sources. The one MP-surface burst crater (Fig. 13) is relatively shallow, having a diameter which is about nine times its depth. The dimensions, relative shape and zones of rupture and permanent displacement of soil vary widely according to the properties of the earth medium. Fard rock, of course, yields the amallest craters, wet soils the largest, although if the soil is saturated, the crater depth may be quite shallow. For a one megaton surface burst on dry soil, one can expect the volume of the hole to be of the order of 100 million cubic feet, representing the excavation (or compaction) of a few million tons of soil.

The precise beight or depth of burst bas a very important influence on crater and on the bomb energy delivered into the soil initially. Some consideration of the role of momentum conservation in the initial energy partition between air and ground (for a surface burst) may help explain this sensitivity to depth of burst.

A true contact burst might be expected to deliver half its momentum downard into the coil and half upward into the air. However, only a fraction of the bomb energy finds its way into kinetic motion of the bomb materials. Purther, since the soil is at least a thousand times denser than the air, the velocities imparted to the soil are less than those created in the air by just this ratio of the densities, if momentum is to be belanced in accord with Newtonian notions. The kinetic energy
imparted in this way will be proportional to the square of the velocity and so will be much less in the dense material. Actually, something like 15 per cent of a one megaton explosion's energy starts out into the ground.

The extremely high energy densities and temperatures of a nuclear explosion guarantee the validity of a hydrodymanic treatment of the closein soil response, since the initial strong shock will vaporize the soil for some distance.

Using a two-dimensional hydrodynamic sodel, and including the effect of the equation of state of one type of soft rock, Robert Bjork, Fancy Brooks and myself at RAND have done some preliminary calculations of such a surface burst. Pigure 14 shows the pressure contours as calculated at about one-tenth of a millisecond. Pressures are in kilobars, so that the highest pressures are about seven megabars and are centered in the downard hemispherical shock at about seven meters radius. The presence of the surface has already caused some relief of pressure at shallow depths, but the main shock appears to be fairly uniform and spherically diverging in a vertical cone of about 90° width.

Figure 15 illustrates the velocity field at this same early time, with the same portion of a spherical shock appearing. Rock vapor is already streaming upwards at velocities of several tons of meters per millisecond (or tens of kilometers per second)!

At a time of some fifty milliseconds the pressure contours still show mach the same curved shock with continued surface relief (F1g. 16). The shock strength is now down to about seven kilobars at a depth of 160 meters, and pressures are approsching a level where hydrodynamics should give way to considerations for the solid state properties of the
rock--the medium is no longer a true fluid. But carrying the calculation further may lead to reasonable first motion information (1.e., peak velocities and stresses), in spite of the failure of the fluid model to include the elastic properties of a solid. In Fig. 17 the velocity vectors at about 50 milliseconds show the same spherical natare with the high speed jetting above the surface typical of such a burst. Figure 18 shovs a continuation of this problem to 100 milliseconds, where the shock pressures are like 3 kilobars at a depth of 250 meters ($\sim 800 \mathrm{ft}$). These are pressures of an awkward level to treats too high for clearly elastic propagation and too low for hydrodynamics to be rigorously applicable in many earth materials. Crushing, plastic and viscoelastic behavior could be expected to have important influences on both the subsequent wave propagation and on the response of an inbedded structure. In this analysis, the portion of the shock running vertically below the burst point remains the strongest, and it may represent a significant limitation to the survivability of structures directiy underneath a large yield explosion. It remains to be stated that almost no field experience exists in this regime directly under a crater, although the lack is recognized and is being remedied to some extent.

The corresponding velocity field of this 100 ms time is shown in Fig. 19. A gratifying, if fortuitious, aspect of the velocities at both this time and at the previous 50 ms time is the ratber clear division of upward and downard motion by a contour not unlike that which represents the expected final crater profile.

Figure 20 displays the relations between peak pressures (or stresses) versus distance from the point of burst along the vertical (V), the horizontal (H) and along a diagonal at 45° from the vertical (D).

Ignoring the various other curves on this graph, one should note that the early decay of peak pressure follows an inverse cube of the slant distance from the burst point, as expected for a strong shock in any medium. At the lower pressures the decay approaches a more gradual decay-more like the inverse square or inverse three-halves power of the radius. The pressures along the horizontal continue to drop more rapidiy even at low stresses since here the rock is in more intimate contact with the much lower air pressures.

Pigure 21 offers some idea of the peak velocities as a function of radial distance from the burst point. The maximam velocities occur in the vertical direction and along a vertical line below the burst. The horizontal component of velocity along this aame vertical line is very small, indicating mainly the effect of the divergence in the expending shock wave. The peak velocity components both vertical and borizontal along the surface are as mach as a factor of two or three gmaller than the maximm velocities along the vertical.

VII. GROUND SEDCK

Figure 22 should give some feeling for the relative dimensions of the air and ground shocks at about 77 ms, a time when the air shock peak overpressure is 1000 psi. In addition to the intense direct shock in the vicinity of the crater, a ground shock is induced under the air blast slap at the larger distances. As indicated earlier, the air induced portion of the ground shock is initially directed quite vertically since the air blast expands so much faster than the pressure pulse in the ground can travel. Labeling this region as "superseismic," Fred Sauer of Stanford Research Institute has provided the seaiempirical and very approximate formulas of Table 2 as guidance in determining the levels of ground shock in this region between the point where the direct or cratering shock ceases to dominate and the distance (or overpressure level) where the air shock speed becomes less than the seismic velocity in the local ground materials.

Table 2
GUPERETSISMIC GROURD SEDCK

Maxima at 5 ft depth

$$
\begin{aligned}
& \text { (C } C_{L}=\text { seismic velocity in rock }=\frac{3}{4} \text { seismic velocity in soil, ft/sec) } \\
& \text { Vertical acceleration: } \frac{a_{m m}}{\Delta P_{s}}=\frac{340}{C_{L}} \mathrm{~g} / \mathrm{psi} \pm 30 \% \\
& (\mathrm{~s}=\text { specific gravity }- \text { dimensionless }) \\
& \text { Velocity: } \frac{u_{\mathrm{Vm}}}{\Delta P_{s}}=\frac{75}{S C_{L}} \frac{\mathrm{Tt} / \mathrm{sec}}{\mathrm{psi}} \pm 20 \%
\end{aligned}
$$

$$
\left(I_{p}=\right.\text { overpressure impulse in positive phase in psi-sec) }
$$

(Table 2, SUPERSEIEMIC GROURD SHDCK continued.)

Note that the vertical acceleration is simply proportional to the peak overpressure of the air shock $\left(\Delta P_{8}\right)$ and inversely proportional to the seismic velocity in the medium. For an example, consider a soil with a seismic velocity of $4000 \mathrm{ft} / \mathrm{sec}\left(s 0 C_{L}=3000\right.$), then from the information on the air blast (Fig. 11), one can determine that the air shock velocity is faster than this seismic velocity at peak overpressure levels above about 400 psi. If we consider a 500 psi peak overpressure, this formula would give the maximum vertical acceleration as 57 g 's, with the uncertainty of 30 per cent allowing the value to be anywhere between 40 and 74 g s .

For the same example, and assuming a specific gravity of two, the peak vertical velocity, according to Sauer's formula, becomes aix and one-fourth feet per second, or between five and seven and one-half feet per second.

Since the impulse in the air blast depends on yield, the maximum displacement is a function of both the peak overpressure level and the explosion yield. For a one megaton surface burst, and again at the 500 psi point, the overpressure inpulse is about 40 psi-sec, so that for this same soil example the displacement is predicted as between
five and ten inches with a best value being seven and one-balf inches.
Although the actual peak stress at depth will depend very much on both the nature of the blast and the nature of the soil, at shallow depths in most media and for large yield explosions it can be assumed to be just the same as the incident peak overpressure. Strain, of course, will depend on the seismic impedance of the material, so that for our example the atrain in parts per thousand will be about three, or between two and four.

In order to estimate the ground shock in the more complex region where the ground shocks can outrun the air shock, Saver has provided the following approximations.

Table 3
GROUID SEDCK OUNRUREITM

$$
\begin{aligned}
& r=R / W^{1 / 3}, \operatorname{Ktt} /(\mathrm{KT})^{1 / 3} \\
& \text { Acceleration: } a_{v i}=\frac{2 \times 10^{5}}{C_{L} r^{2}} g \pm \text { factor } 4 \\
& \text { Velocity: } u_{v i}=\frac{4 \times 10^{5}}{\mathrm{Sc}_{\mathrm{L}} \mathrm{r}^{2}} \mathrm{ft} / \mathrm{sec}+60 \\
& \text { Displacement: } \frac{d_{v M}}{W^{2 / 3}}=\frac{6 \times 10^{4}}{S C_{I} r^{2}} \mathrm{rt} / \mathrm{KI}^{1 / 3} \\
& \text { (reference depth: } 10 \mathrm{ft} \text {) }
\end{aligned}
$$

To employ the same example of a soil with seismic velocity 4000 ft/sec $\left(C_{L}=3000\right)$ and specific gravity of two for the 100 psi point in a megaton explosion, one mast first deternine the appropriate radial distance at which one megaton 100 psi occurs (from Fig. 11 it is about

3500 ft), so that the radial parameter in these formalae becomes three and one-half and the maxdma acceleration formula gives about five g but with a possible range from two to twenty g equally expected. Such a wide range stems in part from the fact that in this "outrunning region signals from reflecting or refracting layers in the soil can cause large variations, but also from the fact that the signals fron elsewhere in the air blast slap may overlap or pile up as a consequence of the extrenely rapid changes in the driving air shock. Figure 23 perhaps overampasizes the irregalar and umpredictable nature of the accelerations in the outrunning phase. lote that scme signal arrives prior to the shock arrival directly above the station $(t=0)$. Note also that the maximua acceleration occurs well after shock arrival. One can at least derive some reassurance from the fact that the peak acceleration is less at depth and that some of the sharppess or higher frequency components are missing as one goes deeper. This aspect points to a weakness in the applicability of elastic wave propagation, since any soil or rock mat exhibit some energy absorption and nonlinearity. Dissipative mechaniass either natural or artificial can be extremely effective in reducing peak stress or velocity-and a few applications have relied heavily on just auch properties.

Following the same example, one finds the maximan velocity for the 100 psi point (but 10 ft dom) from a one Mil burst lies between three pna nine ft/sec, with a mean prediction of five and four-tenths ft/sec. Similariy, the maximm diaplacement for this case comes out as about 10 inches, but here, as with the rest of these semi-empirical formulae, Sauer has many words of caution for the user. These expressions will surely fail when pushed to regions of overpressure, or yields of veapons,
or types of soil or rock much beyond the realm of our test experience. The underlying assumption in formulating these scaling rules has been that of elastic response, a fact which cannot be overemphasized since it requires only a little imagination to picture combinations of natural materials and levels of stress which can result in very nonelastic responses.

In designing for shock 1solation some information on the frequency characteristics of the ground shock is helpful. At high frequencies (greater than $\sim 100 \mathrm{cps}$), the accelerations are most aignificant, since neither large amplitudes nor high velocities are likely to occur when the motions are reversing hundreds of times per second. But between 100 eps and about one cps, maxdman velocities can become frportant. At the lowest frequencies the concern is not for velocities or accelerations, which are likely to be quite modest, but for the actual displacements, since at fractions of a cps the amplitudes of osciliations can become a matter of several feet, and isolating or daming mechanisms mast provide adequate room to swing witbout colliding with wells and umounted equipment.

On this basis, a convenient form in which to express the shock spectra input to a structure is on a harmonic plot which specifies a peak acceleration above 100 cps , a peak velocity between one and 100 cps and a maximu displacement below one cps. A plot combining all of these is roughly possible because of the harmonic nature of elastic wave propagation, and Fig. 24 is such a plot for the vertical ground shock apectra, showing some arbitrary limits for 100 psi and 500 psi for a soil of fairly representative properties. These limits are intentionally on the high side to compensate for some of the uncertainties in the inputs. Pigure 25
illustrates similar estimates for the horizontal ground shock motions. Comparison with the vertical spectra of Fig. 24 will show that although maximan expected accelerations are about the same, peak velocities and maximum displacements are estimated to be mach less in the horizontal direction.

The apecifications so far have not considered the attemation with depth in the soil. quite generally, it can be said that the high frequency components of the ground shock will be most rapidiy attenuated, but since the frequency distribution is not simple and since the attenuating mechanisms are not easily predictable, no precise attenuation rules can be offered at present. N. M. Hewarik of the University of Ilinois has suggested an empirical form for the attenuation of pressure and vertical velocity with depth. The approximation depends on the duration of the blast impulae as approximated by the duration of a triangular pulae having the same peak overpressure and total inpulae of the air blast $\left(t_{i}\right)$.

$$
\frac{\sigma_{d}}{\Delta P_{s}}=\frac{v_{d}}{\nabla_{s}}=\alpha=\frac{1}{1+d / I}
$$

where

$$
\begin{aligned}
\sigma_{d} & =\text { earth stress at depth } d \\
v_{d} & =\text { earth particle velocity at depth } d \\
d & =\text { depth in ft }
\end{aligned}
$$

$$
L=750 t_{i} \sim 300\left(\frac{100}{\Delta P_{B}}\right)^{\cdot 6} W_{V I T}^{1 / 3} \mathrm{ft}
$$

$$
\Delta P_{\mathrm{s}}<500 \mathrm{psi}
$$

This form requires further modification for applications above 500 psi, since the high shock velocities at the higher overpressure levels tend to reduce the attenuation by the more rapid loading of larger aurface areas.

$$
\begin{aligned}
I=138\left(\frac{100}{\Delta P_{\mathrm{s}}}\right)^{.6} \mathrm{~W}_{\mathrm{LI}}^{1 / 3} \mathrm{ft} \\
\Delta P_{\mathrm{g}}>500 \mathrm{psi}
\end{aligned}
$$

It should be exphasized that this formala is very approximate and cannot account for wide variations in types of soil, nor does it allow for much dissipation in the soil (which at higher overpressures, particularly will be appreciable).

The presentation bere is too limited for extensive discussion of design techniques in protective construction. A rather loosely connected but quite brosd coverage of the various design considerations and special features is contained in the RAID Corporation report on last year's Protective Construction Sytrosiwn (R-34I). I recomaend it as both interesting reading and as an excellent manary and bibliographic source.

Spallation is one possible feature of strong earth shock interaction with undergrowd carity walls. Figure 26 schematicaliy indicates this effect. If an impinging compressional wave is both sharp enough and strong enough to create tensions (or pressure gradients) near the cavity surface which exceed the tensile strength of the material, slabs or chips may shatter off. Spallation is less likely when the loading pulse is so broad or gradusl that no large stress differences occur over distances comparable to the carity's shortest dimension. As one goes to large yields and to large depths, the ground shock pulse should become less
sharp, so that spallation may become less important than shock isolation in many applications.

VIII. AFIER EFTECTS

Having possibly survived a near miss in a protected installation, a question of some importance to a missile systen would be how soon can doors open and birds fly. Immediately following the blast wave positive phase, a negative phase sets in, in which the winds reverse and blow towards ground zero, and the overpressure becones negative. The negative overpressure can approach as much as three psi of suction which could exert considerable lift on a sealed, pressurized installation. (A three psi partial vacum could lift a concrete lid three feet thick!) The reversed winds may be strong enough to bring back some debris to clog openings or revetments. These winds do not stop within a few seconds, but fade right into the circulation get up by the Fising firebeli. Recalling the situation in the late fireball, one observes a large low density hole in the hot region. Figure 27 shows the density vergus radius of this region oat to a few seconds. This several thousand foot diameter low density sphere begins imediately to rise like a bubble in the ataosphere as the denser air around it forces it upwards. The rate of rise after a few seconds levels off at around $400 \mathrm{It} / \mathrm{sec}$. The circulation is such that the velocities in the sten that flows up through the rising clovd are about twice the clovd-rise velocities, or as mach as $800 \mathrm{ft} / \mathrm{sec}$. The consequences of such wind velocities can be better appreciated when one considers that the drag created by this flow could hold aloft as mach as a seven ton boulder, or could loft lesser rocks and debris to very high altitudes. The cloud continues to rise for four to six minutes, wich talses it to altitudes upwards of sixty thousand feet,
dependent on meteorology. Bren after the cloud has stabilized, the stem continues to rise as the circulation persists. During the time of the initial cloud rise much of the cratered debris is aloft on various trajectories, and much of this material will be excavated at pressures below that needed to pulverize or vaporize the rock or soil, some of it will be lofted in essentialiy its original sizes and shapes. If the soil is rocky, then some rocky throwout may be carried up. Consequently, since the stem of the cloud extends out far beyond the 100 psi distance from a one megaton burst, there is some chance that rocks may rain down over a wide area for many mimutes after a burst.

Again, if the wind circulation closely corresponds to the visible cloud and stem movements, one may expect wind velocities of the same order of magnitude ($\sim 100 \mathrm{ft} / \mathrm{sec}$) at the base of the stem, i.e. in the dust-laden air above a 100 psi shelter.

Visibility will be restricted and unpredictable over an area corresponding to at least the 10 psi distance from such bursts, so that visual assessment of the post-burst external enviroment will not always be possible. Direct human exposure would be undesirable, possibly even fatal, in the local fallout, which outside the immediate crater area (but within 10 or so miles) can still run to thousands of roentgens per hour in the first few hours to a few hundred at the end of a day. Total doses (integrated over time) after 18 hours may be in excess of $3000 r$ over a thousand square miles. Clearly, surviving nearby surface installations or support structures will not be habitable for many hours after a megaton weapon surface burst even in extreme emergencies.

The persistence of unfarorable after-effects, which may be so dangerous as to prohibit normal lannch procedures, suggests that serious thought be given to designing missile systems with sufficient protection to ride out in aafety an anticipated attack, and thous avoid the many difficulties in carrying out a prompt response. At least one is required to carefuliy assess the penalties which mast accompany a specified fast response where the fast response is to apply alao after a bomb has struck.

SHOCK INFLUENCE ON PROMPT GAMMA - RAYS

Fis. 1. Bhoek Influence on Prompt Garmen Bay
Tre fiasien frugnent gamerays travel with littile atternation throngh the partial vecman of the Ifreball interior but aboorb and moatter stremely in the danse air just behind the shock treat, and attermate mormally in the madiaturibed air ahead of the shocko

$$
\begin{array}{r}
P-1951 \\
3-31-60 \\
37
\end{array}
$$

HALF-THICKNESSES FOR GAMMA RAY ATTENUATION

Fig. 2

FIREBALL TEMPERATURE VS RADIUS AT EARLY TIMES

 one megaton - surface burst

Fig. 3

FIREBALL DENSITY VS RADIUS AT EARLY TIMES

 one megaton - surface burst

Fis. 4

FIREBALL OVERPRESSURE VS RANGE AT EARLY TIMES ONE MEGATON - SURFACE BURST

218. 5

LATE FIREBALL TEMPERATURE VS RADIUS

ONE MEGATON - SURFACE BURST

Hig. 6

TEMPERATURE VS TIME AT HIGH PEAK OVERPRESSURES

ONE MEGATON - SURFACE BURST

FIg. 7

OVERPRESSURE VS RADIUS
ONE MEGATON - SURFACE BURST

48. 8

OVERPRESSURE VS TIME ONE MEGATON - SURFACE BURST

718. 9

Fig. 10

SHOCK PARAMETERS VS SHOCK OVERPRESSURE

F18. 11

IMPULSES AND DURATIONS IN POSITIVE PHASE OF OVERPRESSURE

M1. 12

ELASTIC ZONE
(11411)

Fig. 13

Fis. 14

34， 25
解
x
$\therefore .-\quad$－
$\cdots \quad \therefore \quad$ 毒

TUFF 1°

PRESSURE FIELD $\tau=5249$ (ms)

Fig. 16

4
4
48
48
FIS. 19

18. 20

718. 21

ONE MEGATON - 1000 PSI
.077 SECONDS, 1500 FT RADIUS

P18. 22

VERTICAL ACCELERATIONS AT SHALLOW DEPTHS

Fig. 23

VERTICAL SHOCK SPECTRA

FIE 24

HORIZONTAL SHOCK SPECTRA

Fig. 25

SPALLATION

Fig. 26

LATE FIREBALL DENSITIES

ONE MEGATON - SURFACE BURST

Mg. 27

Fig. 28

BIBLICGRAPEY - NUCLBAR RADIATION

1. Glasstone, Samuel (ed.), fiffects of Huclear Heapong U.S. Department of Defense, Atomic Energy Comalssion, June 1952.
2. Huclear Radiation Panel, Apace Technology Laboratories, Inc., Muclear Radiation Criteria for Bardened ICEM Systems, STL/TR-59-0000-00735, Decenber 1959 (secret).
3. Kinch, J. W., et al., Feution Fux From Large-Yield Bursts ArsifP IITR 1622-1, Operation Eardtack, August 22, 1958 (Secret-RD).
4. Malik, J., Surmary of Gama Radiation From Atomic Weapong Los Alamos Scientific Laboratory, IA 1620, January 1954 (gecret-RD).
5. Etherington, H. (ed.), Huclear Engineering Fandbook, McGraw-Hill, New York, 1958.
6. Spencer, Lo V. and J. C. Lamkin, Slant Penetration of Gaman Rays: Mixed Radiation Bources, Hational Bureau of Standarde, HBS Report 6322, February 1959.
7. Basley, J. W., Comparison of Heutron Damage in Germanium and Silicon Transistore Traneactions of the Iris-Wescon, Part 3, 1958.
8. Bohan, W. A., J. D. Maxey and R. P. Pecoraro, Some Eifects of Pulse Irradiation on Semiconductor Devices, IPM, March 1959.
9. Nessenger, G. C. and J. P. Spratt, The Effecte of Feutron Irradiation on Germaniwn and Silicon, Iransactions of the Ifis, Jume 1958.
10. The Effect of luclear Radiation on Transistors, The Radiation Effects Information Center, Hatelle Memorial Institute, Tech. Memo No. 5.
11. Keister, G. Lo and Ho Y. Stevart, "The Fffects of Fuclear Radiation on Selected Semiconductor Devices," Proceedings of the IER, Vol. 45, No. 7, p. 931, July 1957.
12. Blder, G. E., Effects of Duclear Detonations on Hike Bercules, IIR 1439, Operation Plumbob, March 1958 (Confidential).

BIRYTOGRAPEY - AIR BIABT AND FIPBSALI

1. Glasstone, Samuel (ed.), Bffects of Fucjear Heapons, U. S. Department of Defense, Atomic Bnergy Comission, June 1952.
2. Capabilities of Atomic Weapons, Armed Forces Special Weapons Project, TM 23-200, November 1957.
3. Brode, H. L., Theoretical Description of the Blast and Fireball for a Sea Level Megaton Explosion, The RAlil Corporation, Research Memorandum RM-2248, September 1959 (Secret-FRD).
4. O'Sullivan, John J. (ed)., Proceedings of the Second Protective Construction Symposiwn, Vols. I and II, The RAND Corporation Report R-341, March 24, 25, 26, 1959.
5. Brode, H. Lo, The Blast Wave in Air Resulting Prom a High Temperature, High Pressure Bphere of Air, The RAND Corporation, Research Nemorandum FM-1825-ABC, December 3, 1956.
6. Brode, H. Lo, Space Plots of Pressure, Density and Particle Velocity for the Blast Wave From a Point Source in Air, The RAND Corporation, Research Memorandum RM-1913-AEC, June 3, 1957;
and
Brode, H. In, Point Source Explosion in Aix, The RALD Corporation, Besearch Memorandum FiM-1824-ABC, December 3, 1956.
7. Brode, H. In, Reflection Pactors for Dormally Reflected ghocks in Air, The RAID Corporation, Research Memoranduan Fil-2211, July 14, 1958.
8. Brode, H. L., Wuclear Weapons Phenomens Pertinent to Protective Desimp The RAID Corporation, Research Memorandum FM-1938, July 19, 1957 (Secret-ED).
9. Moulton, J. F., Jr., Muclear Weapons Blast Phenomena, U.S. Maval Ordnance Laboratories and Defense Atomic Support Agency, AFSNP 1048 and 1095 or Rivord 5721 and 6085, July 1957 and 1958.

BIBLIOGRAPHY - GROURD SHOCK

1. O'Sullivan, Jom J. (ed.), Proceedinge of the Second Protective Construction Symposium, Vols. I and II, The RABD Corporation, Beport R-341, March 24, 25, 26, 1959.
2. Qlasstone, Samuel (ed.), Effects of Buclear Heapons, U. S. Department of Defense, Atomic Buergy Comaission, June 1952.
3. Sauer, Fred M., Groumd Motion Produced by Above-Ground Fuclear Explosions, Air Force Special Weapons Center, Arsinc-Tin-59-71 (Secret-FRD).
4. Barton, M. V., Ground Shock Appects of the Fard Bace Story Space Technology Laboratories, SII/TNT-60-0000-09013 (Confidential).
5. Merritt, J. Lo and N. M. Fevmark, Desicn of Underground Structures to Resist huclear Blast, Vol. 2, University of Iilinois and Office of Engineers, Final Report DA-49-129-Eng-312, April 1958.
